RKyacera
 mita

FS-6020

SERVICE
 MANUAL

Published in Oct. '02

Revision history

Version	Data	Replaced pages	Remarks
1.0	8-Oct-2002	-	

Revocera mita

Safety precautions

This booklet provides safety warnings and precautions for our service personnel to ensure the safety of their customers, their machines as well as themselves during maintenance activities. Service personnel are advised to read this booklet carefully to familiarize themselves with the warnings and precautions described here before engaging in maintenance activities.

Safety warnings and precautions

Various symbols are used to protect our service personnel and customers from physical danger and to prevent damage to their property. These symbols are described below:
A. DANGER: High risk of serious bodily injury or death may result from insufficient attention to or incorrect compliance with warning messages using this symbol.

AWARNING:Serious bodily injury or death may result from insufficient attention to or incorrect compliance with warning messages using this symbol.

ACAUTION: Bodily injury or damage to property may result from insufficient attention to or incorrect compliance with warning messages using this symbol.

Symbols

The triangle (\triangle) symbol indicates a warning including danger and caution. The specific point of attention is shown inside the symbol.
! General warning.
4 Warning of risk of electric shock.

SIIS
Warning of high temperature.
Q indicates a prohibited action. The specific prohibition is shown inside the symbol.
General prohibited action.

Disassembly prohibited.
indicates that action is required. The specific action required is shown inside the symbol.
(!) General action required.
Remove the power plug from the wall outlet.
$\xrightarrow{-}$ Always ground the copier.

1. Installation Precautions

A.WARNing

- Do not use a power supply with a voltage other than that specified. Avoid multiple connections to one outlet: they may cause fire or electric shock. When using an extension cable, always check that it is adequate for the rated current.

- Connect the ground wire to a suitable grounding point. Not grounding the copier may cause fire or electric shock. Connecting the earth wire to an object not approved for the purpose may cause explosion or electric shock. Never connect the ground cable to any of the following: gas pipes, lightning rods, ground cables for telephone lines and water pipes or faucets not approved by the proper authorities.

ACAUTION:

- Do not place the copier on an infirm or angled surface: the copier may tip over, causing injury. \qquad

- Do not install the copier in a humid or dusty place. This may cause fire or electric shock. \qquad

- Do not install the copier near a radiator, heater, other heat source or near flammable material. This may cause fire.

- Allow sufficient space around the copier to allow the ventilation grills to keep the machine as cool as possible. Insufficient ventilation may cause heat buildup and poor copying performance.

- Always handle the machine by the correct locations when moving it. \qquad
- Always use anti-toppling and locking devices on copiers so equipped. Failure to do this may cause the copier to move unexpectedly or topple, leading to injury.
- Avoid inhaling toner or developer excessively. Protect the eyes. If toner or developer is accidentally ingested, drink a lot of water to dilute it in the stomach and obtain medical attention immediately. If it gets into the eyes, rinse immediately with copious amounts of water and obtain medical attention.

- Advice customers that they must always follow the safety warnings and precautions in the copier's instruction handbook. \qquad

2. Precautions for Maintenance

A. WARNING

- Always remove the power plug from the wall outlet before starting machine disassembly
- Always follow the procedures for maintenance described in the service manual and other related brochures.
- Under no circumstances attempt to bypass or disable safety features including safety mechanisms and protective circuits

- Always use parts having the correct specifications. \qquad
- Always use the thermostat or thermal fuse specified in the service manual or other related brochure when replacing them. Using a piece of wire, for example, could lead to fire or other
 serious accident. \qquad
- When the service manual or other serious brochure specifies a distance or gap for installation of a part, always use the correct scale and measure carefully. \qquad

- Always check that the copier is correctly connected to an outlet with a ground connection
- Check that the power cable covering is free of damage. Check that the power plug is dust-free. If it is dirty, clean it to remove the risk of fire or electric shock.

- Never attempt to disassemble the optical unit in machines using lasers. Leaking laser light may damage eyesight.

- Handle the charger sections with care. They are charged to high potentials and may cause electric shock if handled improperly.

ACAUTION

- Wear safe clothing. If wearing loose clothing or accessories such as ties, make sure they are safely secured so they will not be caught in rotating sections.

- Use utmost caution when working on a powered machine. Keep away from chains and belts.

- Handle the fixing section with care to avoid burns as it can be extremely hot.

- Check that the fixing unit thermistor, heat and press rollers are clean. Dirt on them can cause abnormally high temperatures

- Do not remove the ozone filter, if any, from the copier except for routine replacement. \qquad

- Do not pull on the AC power cord or connector wires on high-voltage components when removing them; always hold the plug itself.
- Do not route the power cable where it may be stood on or trapped. If necessary, protect it with a
cable cover or other appropriate item. ..

- Treat the ends of the wire carefully when installing a new charger wire to avoid electric leaks \qquad
- Remove toner completely from electronic components.

- Run wire harnesses carefully so that wires will not be trapped or damaged. \qquad
- After maintenance, always check that all the parts, screws, connectors and wires that were removed, have been refitted correctly. Special attention should be paid to any forgotten connector, trapped wire and missing screws.
- Check that all the caution labels that should be present on the machine according to the instruction handbook are clean and not peeling. Replace with new ones if necessary. \qquad
- Handle greases and solvents with care by following the instructions below: \qquad
- Use only a small amount of solvent at a time, being careful not to spill. Wipe spills off completely.
- Ventilate the room well while using grease or solvents.
- Allow applied solvents to evaporate completely before refitting the covers or turning the main switch on.
- Always wash hands afterwards.
- Never dispose of toner or toner bottles in fire. Toner may cause sparks when exposed directly to fire in a furnace, etc.

- Should smoke be seen coming from the copier, remove the power plug from the wall outlet immediately. \qquad

3. Miscellaneous

AWARNING

- Never attempt to heat the drum or expose it to any organic solvents such as alcohol, other than the specified refiner; it may generate toxic gas.

CONTENTS

1-1 Specifications
1-1-1 Specifications 1-1-1
1-1-2 Parts names 1-1-4
(1) Printer 1-1-4
(2) Operation panel 1-1-5
1-1-3 Machine cross section 1-1-6
1-1-4 Drive system 1-1-7
(1) Drive system 1-1-7
1-2 Handling Precautions
1-2-1 Process unit 1-2-1
1-2-2 Toner container 1-2-1
1-2-3 Installation environment 1-2-1
1-3 Installation
1-3-1 Unpacking and installation 1-3-1
(1) Installation procedure 1-3-1
1-3-2 Installing expansion memory (optional) 1-3-8
1-3-3 Installing network interface card (optional) 1-3-9
1-3-4 Installing hard disk unit (optional) 1-3-10
1-3-5 Installing memory card (optional) 1-3-11
1-4 Service Mode
1-4-1 Service mode 1-4-1
(1) Executing service mode 1-4-1
1-5 Troubleshooting
1-5-1 Paper misfeed detection 1-5-1
(1) Paper misfeed indication 1-5-1
1-5-2 Self-diagnosis 1-5-2
(1) Self-diagnostic function 1-5-2
(1-1) Error code 2000 [E1] (main motor error) 1-5-3
(1-2) Error code 4000 [E2] (polygon motor error) 1-5-4
(1-3) Error code 4200 [E3] (laser output error) 1-5-5
(1-4) Error code 6000 [E4] (fixing heater lamp/fixing thermistor error) 1-5-6
(1-5) Error code 6020 [A2] (abnormally high fixing temperature error) 1-5-7
(1-6) Error code 6400 [A0] (fixing heater lamp control zero-cross signal detection error) 1-5-8
(1-7) Error code F0 [F0] (communication error between the operation panel PWB and main PWB) 1-5-8
(1-8) Error code F010 [F1] (code ROM checksum error) 1-5-9
(1-9) Error code F020 [F2] (main PWB RAM checksum error) 1-5-10
(1-10) Error code F030 [F3] (main PWB controller error) 1-5-11
(1-11) Error code F040 [E0] (communication error between engine/high voltage PWB and main PWB controller) 1-5-11
(1-12) Error code F050 [E6] (engine/high-voltage flash memory checksum error) 1-5-12
(1-13) Error code F080 [E6] (system firmware download error) 1-5-12
(1-14) Error code 0420 [C0]
(serial communication error between paper feeder and engine/high voltage PWB) 1-5-13
(1-15) Error code 1210 [C2] (duplexer slide guide home position detection error) 1-5-15
(1-16) Error code 2610 [B2] (paper feeder 1 feed motor error) 1-5-16
(1-17) Error code 2620 [B3] (paper feeder 2 feed motor error) 1-5-16
(1-18) Error code 2630 [B4] (paper feeder 3 feed motor error) 1-5-16
(1-19) Error code 2640 [B5] (paper feeder 4 feed motor error) 1-5-16
1-5-3 Electrical problems 1-5-17
(1) Even if the top cover is closed, the message "close top cover" remains 1-5-17
(2) Even if the rear cover is closed, the message "close rear cover" remains. 1-5-17
(3) The message "Paper Jam" remains 1-5-17
(4) The message "Face-down tray paper full" remains 1-5-17
(5) The paper size is not recognized as the size set with the paper size dial of the cassette 1-5-18
(6) The message "Self test" remains when the printer is started 1-5-18
(7) No message is displayed when the power switch is turned on. (All dots of LCD are on.) 1-5-18
(8) No message is displayed when the power switch is turned on. (All dots of LCD are off.) 1-5-18
1-5-4 Image formation problems 1-5-19
(1) No image appears. (entirely white) 1-5-20
(2) No image appears. (entirely black) 1-5-20
(3) Image is light as a whole 1-5-21
(4) Background is gray 1-5-21
(5) A white line appears longitudinally 1-5-21
(6) A black line appears longitudinally 1-5-22
(7) A black line appears laterally 1-5-22
(8) One side of the print image is darker than the other. 1-5-22
(9) Black dots appear on the image. 1-5-23
(10) Image blurs. 1-5-23
(11) Image is displaced toward the rear side of paper. 1-5-23
(12) Paper creases. 1-5-24
(13) Offset occurs. 1-5-24
(14) Image is partly missing. 1-5-24
(15) Fixing is poor. 1-5-25
(16) Image becomes dim 1-5-25
(17) Image is inclined 1-5-25
1-6 Assembly and Disassembly
1-6-1 Precautions for assembly and disassembly 1-6-1
(1) Precautions 1-6-1
1-6-2 Covers 1-6-2
(1) Detaching and refitting the top cover 1-6-2
(2) Detaching and refitting the left cover 1-6-3
(3) Detaching and refitting the right cover 1-6-4
(4) Detaching and refitting the rear cover 1-6-5
(5) Detaching and refitting the front cover 1-6-6
1-6-3 Paper feed section 1-6-7
(1) Detaching and refitting the feed and pickup rollers 1-6-7
(2) Detaching and refitting the paper feed unit 1-6-8
(3) Detaching and refitting the MP tray feed roller 1-6-10
(4) Detaching and refitting the MP tray feed unit 1-6-11
(5) Detaching and refitting the retard roller 1-6-13
(6) Detaching and refitting the drive assembly 1-6-14
1-6-4 Laser scanner unit section 1-6-15
(1) Detaching and refitting the laser scanner unit 1-6-15
1-6-5 Process unit section 1-6-16
(1) Detaching and refitting the main charger unit 1-6-16
1-6-6 Transfer/separation section 1-6-17
(1) Detaching and refitting the transfer roller and separation charger unit 1-6-17
1-6-7 Fixing section 1-6-18
(1) Detaching and refitting the fixing unit 1-6-18
(2) Detaching and refitting the fixing heater lamp 1-6-19
(3) Detaching and refitting the heat roller 1-6-21
(4) Detaching and refitting the press roller 1-6-22
(5) Detaching and refitting the fixing thermistor and separator 1-6-23
(6) Detaching and refitting the fixing thermostat 1-6-24
1-6-8 PWBs 1-6-25
(1) Detaching and refitting the main PWB 1-6-25
(2) Detaching and refitting the engine/high voltage PWB 1-6-26
(3) Detaching and refitting the power source PWB 1-6-29
1-7 Firmware
1-7-1 Downloading firmware 1-7-1
(1) Format for the firmware files 1-7-1
(2) Downloading firmware via the parallel interface 1-7-2
(3) Downloading firmware using the memory card 1-7-3
(4) Downloading the message data 1-7-5
2-1 Mechanical construction
2-1-1 Paper feed/conveying section 2-1-1
(1) Paper feed section/paper cassette 2-1-1
(2) MP tray feed section 2-1-3
(3) Conveying section 2-1-4
2-1-2 Process unit section 2-1-5
(1) Development section 2-1-5
(2) Main charger/drum section 2-1-7
2-1-3 Laser scanner unit section 2-1-9
(1) Laser scanner unit 2-1-9
2-1-4 Transfer/separation section 2-1-12
2-1-5 Cleaning section 2-1-13
2-1-6 Fixing section 2-1-15
2-1-7 Face-down eject/feedshift section 2-1-17
2-2 Electrical Parts Layout
2-2-1 Electrical parts layout 2-2-1
(1) Main frame 2-2-1
(2) Process unit, laser scanner and fixing unit 2-2-3
2-3 Operation of the PWBs
2-3-1 Power source PWB 2-3-1
2-3-2 Engine/high voltage PWB 2-3-3
(1) Fixing heater lamp control circuit 2-3-4
(2) Fixing heater lamp lighting runaway prevention - fixing thermistor disconnection detection circuit 2-3-5
(3) Interlock switch - eco-power circuit 2-3-6
(4) Optional equipment identification circuit 2-3-7
2-3-3 Main PWB 2-3-11
2-4 Appendixes
Timing chart No. 1 Paper cassette feeding, two A4 size papers 2-4-1
Timing chart No. 2 Paper cassette feeding, two A4R size papers 2-4-2
Timing chart No. 3 Paper cassette feeding, two A3 size papers 2-4-3
Timing chart No. 4 Paper cassette feeding, two B5 size papers 2-4-4
Timing chart No. 5 Paper cassette feeding, two B4 size papers 2-4-5
Timing chart No. 6 Paper cassette feeding, two letter size papers 2-4-6
Timing chart No. 7 Paper cassette feeding, two letter R size papers 2-4-7
Timing chart No. 8 Paper cassette feeding, two legal size papers 2-4-8
Timing chart No. 9 Paper cassette feeding, two ledger size papers 2-4-9
Timing chart No. 10 MP tray feeding, two A4 size papers 2-4-10
Timing chart No. 11 MP tray feeding, two A4R size papers 2-4-11
Timing chart No. 12 MP tray feeding, two A3 size papers 2-4-12
Timing chart No. 13 MP tray feeding, two B5 size papers 2-4-13
Timing chart No. 14 MP tray feeding, two B4 size papers 2-4-14
Timing chart No. 15 MP tray feeding, two letter R size papers 2-4-15
Timing chart No. 16 MP tray feeding, two letter size papers 2-4-16
Timing chart No. 17 MP tray feeding, two legal size papers 2-4-17
Timing chart No. 18 MP tray feeding, two ledger size papers 2-4-18
Timing chart No. 19 MP tray feeding, two custom size papers 2-4-19
Wiring diagram 2-4-20
Repetitive defects gauge 2-4-21

This page is intentionally left blank.

1-1-1 Specifications

Type ... Desktop	
Printing system .	Electrophotographic printing
Paper ...	Cassette: Plain paper (60 to $90 \mathrm{~g} / \mathrm{m}^{2}$)
	Recycled paper (60 to $90 \mathrm{~g} / \mathrm{m}^{2}$)
	Thick paper (90 to $105 \mathrm{~g} / \mathrm{m} 2$)
	MP tray: Plain paper (60 to $90 \mathrm{~g} / \mathrm{m}^{2}$)
	Recycled paper (60 to $90 \mathrm{~g} / \mathrm{m}^{2}$)
	Thick paper (90 to $200 \mathrm{~g} / \mathrm{m}^{2}$)
	Special paper:Transparencies, labels, envelopes, postcards, tracing paper
Printing sizes	A4 ($297 \times 420 \mathrm{~mm}$)
	B4 (257 $\times 364 \mathrm{~mm}$)
	A4R ($210 \times 297 \mathrm{~mm}$)
	A4 (297 $\times 210 \mathrm{~mm}$)
	B5 ($257 \times 182 \mathrm{~mm}$)
	Folio (210 $\times 182 \mathrm{~mm}$)
	Ledger (11" $\times 17$ ")
	Legal (8.5" $\times 14$ ")
	Letter-R (11" $\times 8.5$ ")
	Letter (11 " $\times 8.5$ ")
	Non-standard size (148 to $297 \mathrm{~mm} \times 210$ to 432 mm : cassette)
	Non-standard size (70 to $148 \mathrm{~mm} \times 297$ to 450 mm : MP tray)
Print speed	Cassette (Values within [] are speed of printing through an optional duplexer DU400.)
	A4: 20 pages/minutes [20 images/minutes]
	A3: 11 pages/minutes [11 images/minutes]
	B4: 12 pages/minutes [12 images/minutes]
	A4R: 15 pages/minutes [15 images/minutes]
	B5: 17 pages/minutes [17 images/minutes]
	A5: 20 pages/minutes [20 images/minutes]
	Ledger: 11 pages/minutes [11 images/minutes]
	Legal: 13 pages/minutes [13 images/minutes]
	Letter: 20 pages/minutes [20 images/minutes]
	Letter-R: 16 pages/minutes [16 images/minutes]
	MP tray (in cassette mode)
	A4: 20 pages/minutes
	A3: 11 pages/minutes
	B4: 12 pages/minutes
	A4R: 15 pages/minutes
	B5: 17 pages/minutes
	A5: 20 pages/minutes
	Ledger: 11 pages/minutes
	Legal: 13 pages/minutes
	Letter: 20 pages/minutes
	Letter-R: 16 pages/minutes
First print time	Standby mode: 22 seconds or less (A4) [when the EcoPower mode is on]
	Sleep mode: 22 seconds or less (A4) [when the EcoPower mode is on]
	Standby mode: 12 seconds or less (A4) [when the EcoPower mode is off]
	Sleep mode: 22 seconds or less (A4) [when the EcoPower mode is off]
Warm-up time	Sleep mode: 28 seconds or less (room temperature $23{ }^{\circ} \mathrm{C}, 60 \% \mathrm{RH}$)
	Power on: 60 seconds or less (room temperature $23{ }^{\circ} \mathrm{C}, 60 \% \mathrm{RH}$)
Paper feed syste	One universal type cassette, and one MP tray
Paper loading cap	Cassette: 250 sheets ($75 \mathrm{~g} / \mathrm{m}^{2}, 0.1 \mu \mathrm{~m}$)
	MP tray: 100 sheets ($75 \mathrm{~g} / \mathrm{m}^{2}, 0.1 \mu \mathrm{~m}$)
	Duplexer: No stack
Paper eject syste	Face down; 250 sheets ($75 \mathrm{~g} / \mathrm{m}^{2}, 0.1 \mu \mathrm{~m}$) equipped with face-down paper full sensor
Photoconductor.	OPC drum (diameter 30 mm)
Charging system	Scorotron (positive charging)
Exposure light sour	Semiconductor laser
Developing syste	One-component dry developing (reverse developing)
-	Developer: One-component magnetic toner
	Toner replenishing: Automatic from the toner container

Power source 120 V AC, 60 Hz (U.S.A./Canada)	
	220-240 V AC, $50 / 60 \mathrm{~Hz}$ (European countries)
Power consumption	Maximum: 961 W
	Normal operating: 382 W
	Ready: 21 W
	EcoPower: 8 W
Current	10.8 A: 21 W (U.S.A./Canada)
	7.2 A: 21 W (European countries)
Noise	Printing: $54 \mathrm{~dB}(\mathrm{~A})$
	Ready: $31 \mathrm{~dB}(\mathrm{~A})$
Options	Expansion memory (one of 16/32/64/128 MB 100-pin DIMM), KPLD3 upgrade kit UG13, memory card (CompactFlash), hard disk unit (Microdrive), network interface card IB-20 (10 BASE-T/100BASE-TX/10BASE-2), network interface card IB-21E (10 BASE-T/100BASE-TX), wireless network interface card IB-22 (compatible to IEEE 802.11b), serial interface board IB-11, paper feeder PF-400 (500 sheets [60 to $105 \mathrm{~g} /$ $\left.\mathrm{m}^{2}\right] \times 1$ cassette, A3, A4, A4R, A5, B4, B5, folio, ledger, legal, letter, and letter-R), duplexer DU-400

1-1-2 Parts names

(1) Printer

Figure 1-1-1
(1) Operation panel
(2) Front cover
(3) Top cover
(4) Face-down tray
(5) MP tray
(6) Paper cassette
(7) Optional interface slot cover
(8) Power switch
(9) AC inlet
(10) Rear cover
(11) Optional interface slot
(12) Memory card slot
(13) Parallel interface
(14) USB interface
(15) Caution label
(2) Operation panel

Figure 1-1-2
(1) Message display
(2) Interface indicator
(3) Paper size indicator
(4) Paper type indicator
(5) READY indicator
(6) DATA indicator
(7) ATTENTION indicator
(8) ENTER key
(9) CANCEL key
(10) MENU key
(11) \triangle key
(12) $\boldsymbol{\nabla}$ key
(13) 4 key
(14) ? key
(15) GO key

1-1-3 Machine cross section

Figure 1-1-3 Machine cross section
(1) Paper cassette
(2) Paper feed section
(3) Conveying section
(4) MP tray
(5) MP tray feed section
(6) Laser scanner unit section
(7) Process unit section
(8) Transfer/separation section
(9) Fixing section
(10) Face-down eject/feedshift section

1-1-4 Drive system

(1) Drive system

Figure 1-1-4
(1) Drive assembly
(2) Pinch roller
(3) Face-down roller
(4) Upper registration roller
(5) Lower registration roller
(6) Face-down roller gear Z18
(7) Registration roller gear Z32-Z31
(8) Registration roller gear Z24
(9) Joint gear Z31
(10) Gear Z35
(11) Idle gear Z25
(12) Free gear Z34S
(13) Free gear Z29S
(14) Gear Z52S
(15) Transfer roller gear Z18
(16) Gear Z24S-Z96H
(17) MP tray feed pulley
(18) MP tray feed roller
(19) Feed clutch (gear)
(20) Feed roller
(21) Pickup roller
(22) Middle feed clutch (gear)
(23) Pinch roller
(24) Middle feed roller
(25) Heat roller gear Z36
(26) Fixing joint gear Z32
(27) Fixing idle gear Z22
(28) Eject gear Z22
(29) Eject roller
(30) Eject pulley
(31) Heat roller

1-2-1 Process unit

Note the following when handling or storing the process unit.

- When removing the process unit, never expose the drum surface to strong direct light.
- Avoid abrupt changes in temperature and humidity.
- Avoid exposure to any substance which is harmful to or may affect the quality of the drum.
- Do not touch the drum surface with any object. Should it be touched by hands or stained with oil, clean it.

1-2-2 Toner container

Store the toner container in a cool, dark place. Avoid direct light and high humidity.

1-2-3 Installation environment

1. Temperature: $10-32.5^{\circ} \mathrm{C} / 50-90.5^{\circ} \mathrm{F}$
2. Humidity: $20-80 \%$ RH
3. Power supply: 120 V AC, 10.8 A (U.S.A./Canada)

220-240 V AC, 7.2 A (European countries)
4. Power source frequency: $50 \mathrm{~Hz} \pm 2 \% / 60 \mathrm{~Hz} \pm 2 \%$
5. Installation location

- Avoid direct sunlight or bright lighting. Ensure that the photoconductor will not be exposed to direct sunlight or other strong light when removing paper jams.
- Avoid extremes of temperature and humidity, abrupt ambient temperature changes, and hot or cold air directed onto the machine.
- Avoid dust and vibration.
- Choose a surface capable of supporting the weight of the machine.
- Place the machine on a level surface (maximum allowance inclination: 1°).
- Avoid air-borne substances that may adversely affect the machine or degrade the photoconductor, such as mercury, acidic of alkaline vapors, inorganic gasses, NOx, SOx gases and chlorine-based organic solvents.
- Select a room with good ventilation.

6. Allow sufficient access for proper operation and maintenance of the machine.

Machine front: $1000 \mathrm{~mm} / 393 / \mathrm{s}^{\prime \prime}$ Machine rear: $100 \mathrm{~mm} / 3^{15} / 6^{\prime \prime}$
Machine right: $700 \mathrm{~mm} / 27^{1 / 2 "} \quad$ Machine left: $600 \mathrm{~mm} / 23^{5} / \mathrm{s}^{\prime \prime}$
a: $467 \mathrm{~mm} / 18^{3} / \mathrm{s}^{\prime \prime}$
b: $310 \mathrm{~mm} / 12^{3} / 16^{\prime \prime}$
c: $410 \mathrm{~mm} / 16^{1 / 8 "}$

Figure 1-2-1 Installation dimensions

1-3-1 Unpacking and installation

(1) Installation procedure

Unpacking.
Unpack as shown in the figure below.

Figure 1-3-1 Unpacking

Figure 1-3-2 Shipped components

Installing the toner container.

1. Open the top cover.
2. Turn the lock lever to the UNLOCK position. (LOCK position at shipping)

Figure 1-3-3
3. Shake the toner container more than ten times to loosen the toner.

4. Remove the protective seal from the toner container.

Figure 1-3-5
5. Install the toner container into the printer.
6. Push the upper part of the toner container on which "PUSH HERE" is printed until the container clicks.
7. Turn the lock lever to the LOCK position.
8. Close the top cover.

Figure 1-3-6

Connecting the printer cable.

For connection to a computer, parallel interface or USB interface can be used in the standard configuration. If an optional network interface card or serial interface card is installed, network connection or serial interface connection is available.

1. Connect the parallel interface cable or the USB interface cable to their relevant interface connector.

Figure 1-3-7

Connecting the power cord.

1. Connect the power cord to the AC inlet.

Figure 1-3-8

Loading paper.

1. Remove the cassette from the printer.
2. Adjust the paper guides and the paper stopper according to the paper size to be used.
3. Set the stack of paper that does not exceed the paper upper limit marks on the paper guides and the paper stopper by aligning the top of the stack and placing the rear side first. (Approximate 250 sheets of 0.1 mm thick paper can be loaded.)

Figure 1-3-9
4. Turn the paper size dial so that the size of the loaded paper is indicated in the paper size indication window.
If "OTHER" is selected, paper size setting must be performed on the operation panel of the printer.
5. Install the cassette into the printer.

Figure 1-3-10

Printing a status page for test.

1. Turn on the printer power switch. Initialization of the machine will start. The message will change from "Self test" to "Please Wait Adding toner" and then change to "Ready" when initialization is complete (after approximately 15 minutes).
2. Use the following key operation to print a status page for test.
(1) Press the MENU key when "Ready" is displayed.
(2) Press the $\boldsymbol{\nabla}$ key to display "Print Status Page".
(3) Press the ENTER key to display "Print Status Page?",
(4) Press the ENTER key. "Processing" will be displayed and status page printing will start. When printing is complete, "Ready" will appear again.
3. Check to see if the printout of the status page is proper.

Completion of the machine installation.

1-3-2 Installing expansion memory (optional)

Procedure

1. Turn off the printer power switch.

Cautions

Do not insert or remove expansion memory while the printer power is on. Doing so may cause damage to the printer or the expansion memory.
2. Remove one screw and then remove the optional interface slot cover.
3. Open the stoppers of the memory socket.

Figure 1-3-11
4. Insert the memory so that the two notches of the memory are engaged with the projections of the memory socket.

* Memory produced by Melco Inc. of which the operation has been confirmed is recommended.

5. Close the stoppers of the memory socket.
6. Reattach the optional interface slot cover to its original position.
7. Print a status page to check the memory expansion.

* If memory expansion has been properly performed, information on the installed memory is printed and the total memory capacity has been increased.
(Memory capacity at shipping is 16 MB.)

Figure 1-3-12

1-3-3 Installing network interface card (optional)

Procedure

1. Remove the two screws and then remove the optional interface slot cover.
2. Insert the network interface card into the optional interface slot.
3. Use the two screws to secure the network interface card.

Network interface card that can be installed

Part number	Specifications	Remarks
IB-20	10 Base-TX,100 Base-TX,10 Base2	
IB-21E	10 Base-TX,100 Base-TX	
IB-22	Compatible to IEEE 802.11b	Wireless LAN

Figure 1-3-13

Figure 1-3-14

1-3-4 Installing hard disk unit (optional)

Procedure

1. Remove one screw and then remove the optional interface slot cover.
2. Insert the hard disk unit into the hard disk socket.
3. Reattach the optional interface slot cover to its original position.
4. Format the hard disk. (Refer to the operation guide.)

Figure 1-3-15

Hard disk units that can be installed
(Microdrive)

Manufactured by IBM	
Capacity	Model number
340 MB	DMDM-10340
512 MB	DSCM-10512
1 GB	DSCM-11000

Figure 1-3-16

1-3-5 Installing memory card (optional)

Procedure

1. Turn off the printer power switch.

Cautions

Do not insert or remove a memory card while the printer power is on. Doing so may cause damage to the printer or the memory card.
2. Insert the memory card into the memory card slot.

* A memory card of which the operation has been confirmed is recommended. (Refer to the CF guideline.)

3. Format the memory card. (Refer to the operation guide.)

Figure 1-3-17

1-4-1 Service mode

The printer is equipped with various service modes that can be accessed with MENU key operation on the operation panel.

(1) Executing service mode

Message display

```
Ready
--- A4 PLAIN
```

(1) Press the MENU key.

(3) Press the ENTER key.
(4) Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key several times until ">Service >" is displayed.

(5) Press the $\boldsymbol{?}$ key.

Fig. 1-4-1 Status page for service

Service items		Description
Item		Description
(4) Software jumper switch information (hexadecimal)		[First byte/second byte (displayed in OEM mode only)] First byte Bit $0=1$: (Fixed) Bit 1 = 0: Overseas; 1: Domestic (Japan) Bit 2, 3 (Not used) Bit $4=0$: Kyocera; 1: OEM Bit $5=0$: For Europe; 1: For US Bit $6=0$: Non MICR mode; 1: MICR mode Bit $7=0$: Kyocera; 1: Kyocera Mita Second byte: Displayed in OEM mode only.
(5) Total page		Total print page count
(6) Toner installation information (displayed only when the mode is set)		(Toner installation mode display) Standby mode (After prescribe command TNRE "INST" is entered, until the power is turned off)
(7) Parallel I/O information		-
(8) Serial I/O error code (Not supported by this machine)		00: Normal Bit 0: Framing error Bit 1: Overrun error Bit 2: Parity error
(9) Operation panel lock status (displayed only when locked)		01: Partial lock 02: Full lock
(10) NVRAM error (displayed only when any error has occurred)		01: ID error 02: Version error 03: Checksum error 04: NVRAM crash error
(11) NVRAM downloading status		00: Normal (not downloaded) Bit 0: Font data Bit 1: Host data Bit 2: Macro data Bit 3: Program data Bit 4: Operation panel message data (file name displayed) Bit 5: OEM data (file name displayed) Bit 6: Reserved Bit 7: Error occurred
(12) Printable area setting		/Top offset/Left offset/Page length/Page width
${ }^{(13) L e f t ~ o f f s e t ~ f o r ~ e a c h ~ p a p e r ~ s o u r c e ~}$		/MP tray/Cassette 1/Cassette 2/Cassette 3/Cassette 4 /Cassette 4/Duplexer
(11) Page counter according to paper size		/Legal/Small/ "Small" means sizes smaller than legal and that can be fed.
(15) Page counter according to paper feeder (2 or 3)		/Feeder 2 (total)/Feeder 2 (small)/Feeder 2 (large) /Feeder 3 (total)/Feeder 3 (small)/Feeder 3 (large) * "Total" is calculated by adding the number for "small" to $2 \times$ number for "large" (double count). * "Small" means sizes of which the length in the sub-scan direction is less than 335 mm (length of legal size), and "large" means sizes of which the length is 335 mm or more
(16) Page counter according to paper feeder (4 or 5)		/Feeder 4 (total)/Feeder 4 (small)/Feeder 4 (large)/Feeder 5 (total)/Feeder 5 (small)/Feeder 5 (large) *"Total" is calculated by adding the number for "small" to $2 \times$ number for "large" (double count). * "Small" means sizes of which the length in the sub-scan direction is less than 335 mm (length of legal size), and "large" means sizes of which the length is 335 mm or more.

Service items		Description
Item		Description
(17) Duplexer life counter		/Duplexer (total)/Duplexer (small)/Duplexer (large)/ * "Total" is calculated by adding the number for "small" to $2 \times$ number for "large" (double count). * "Small" means sizes of which the length in the sub-scan direction is less than 335 mm (length of legal size), and "large" means sizes of which the length is 335 mm or more.
(18) Maintenance kit counter		-
(19) Optional unit version		/Feeder 2/Feeder 3/Feeder 4/Feeder 4/Duplexer/
(2) Serial interface information		RS2: RS-232C RS4: RS-422A
(21) Drum sensitivity information		-
(22) Optional unit information		Upper 2 bytes Bit 0: MPF Bits 1 to 6 : Feeders 1 to 6 (6 is not supported) Bit 7: Duplexer Bits 8 to 15: Reserved Lower 2 bytes Bit 0: Bit 1: Face-up (not supported) Bits 2 to 15: Reserved
(23) Average printing ratio (2 digits for integer part, 1 digit for decimal part)		Printing ratio for the total period from shipping (displayed in \%)
(24) Operation panel message language		PMSG command setting (decimal)
(25) Toner capacity setting		Decimal ($\times 100$ sheets)
(26) Engine parameter setting		Hexadecimal, 32 bytes (64 digits)
(27) Media type attributes		Media type setting value from 1 to 28 (fixing temperature, paper thickness, duplex printing) (14 to 20 are unused and always 0×00.)
(28) Media type attributes		Media type setting value from 1 to 28 (print density) (14 to 20 are unused and always 0×00.)
(29) Memory SPD information (slot 1)		Bus error if all digits are "E".
(30) Machine serial number		-

Fig. 1-4-3 Event log (EVENT LOG)

Details of event list

The event list includes the following information.
(A) Number

Prints a list of error history (1 to 16). A smaller number means an older event.
(B) Number of pages Number of pages printed when an error occurred
(C) Description Indicates the description of error.
(D) Code Code (1) identifies an error and codes (2) to (9) indicate the details.

The value 02 of code (1) means a paper misfeed. See code table (1).
The value 99 of code (1) means a self-diagnostic error. See code table (2).

Fig. 1-4-4 Details of event list

Service items		Description		
		Table 1-4-2 Code table (1)		
Code digit and description		Details of code		
(1)	$\begin{array}{\|l\|} \hline \text { Identification } \\ \text { code } \end{array}$	02: Paper misfeed		
(2)	Error type (hexadecimal)	11: Paper misfeed		
(3)	Paper misfeed location (ASCII)	31: Cassette 1 32: Cassette 2 33: Cassette 3 34: Cassette 4 35: Cassette 5 42: MP tray 47: Rear cover 48: Inside the printer 49: Duplexer		
(4)	Paper misfeed sensor location (hexadecimal)	01: Paper feed sensor [32] Paper feed sensor [33] Paper feed sensor [34] Paper feed sensor [35] Registration sensor [48] Switchback timing sensor [49] 02: Eject sensor [47] Refeed rear edge sensor [49] 03: Refeed eject sensor [49] 99: Not determined Values within [] indicate paper misfeed locations.		
(5)	Cause of paper misfeed (hexadecimal)	01: Paper did not pass within a specified time. 02: Paper did not arrive within a specified time. 09: Paper remains longer than a specified time. (other than 01 and 02) 11: Paper misfeed occurred when paper is being transported. 91: Paper remains when power is turned on. 99: Others (Paper stopped due to external cause such as opening of a cover during printing.)		
(6)	Paper source (hexadecimal)	00: MP tray 01: Cassette 1 (in the printer) 02: Cassette 2 03: Cassette 3	04: Cassette 4 05: Cassette 5 06: Reserved 07: Reserved	08: Duplexer 99: Reserved
(7)	Paper size (hexadecimal)	01: Monarch 02: Business 03: International DL 04: International CS 05: Executive 06: Letter size 07: Legal size 08: A4 09: B5 OA: A3 0B: B4 OC: Ledger size	0D: A5 0E: A6 0F: B6 10: Commercial \#9 11: Commercial \#6 12: ISO B5 13: Custom size 1E: C4 1F: Postcard 20: Reply-paid postcard 21: Oficio II 22: $216 \times 310 \mathrm{~mm}$	22: $216 \times 316(\mathrm{~mm})$ 24: A3 wide 25: Ledger wide 27: 8K 28: 16K 32: Statement 33: Folio 34: Western type 2 35: Western type 4 86: Letter-R 88: A4-R 89: B5-R

Service items		Description
Code digit and description		Details of code
(8)	Main cause of paper misfeed (hexadecimal)	10: Paper does not arrive at the registration sensor. 11: Paper does not pass the registration sensor. 12: Paper remains at the registration sensor when power is turned on. 20: Paper does not arrive at the eject sensor. 21: Paper does not pass the eject sensor. 22: Paper remains at the eject sensor when power is turned on. 30: Paper does not arrive at the paper feeder 1 feed sensor. 31: Paper does not pass the paper feeder 1 feed sensor. 32: Paper remains at the paper feeder 1 feed sensor when power is turned on. 40: Paper does not arrive at the paper feeder 2 feed sensor. 41: Paper does not pass the paper feeder 2 feed sensor. 42: Paper remains at the paper feeder 2 feed sensor when power is turned on. 50: Paper does not arrive at the paper feeder 3 feed sensor. 51: Paper does not pass the paper feeder 3 feed sensor. 52: Paper remains at the paper feeder 3 feed sensor when power is turned on. 60: Paper does not arrive at the paper feeder 4 feed sensor. 61: Paper does not pass the paper feeder 4 feed sensor. 62: Paper remains at the paper feeder 4 feed sensor when power is turned on. A1: Paper does not arrive at the duplexer switchback timing sensor. A2: Paper does not arrive at the duplexer refeed rear edge sensor. A3: Paper does not pass the duplexer switchback timing sensor. A4: Paper does not arrive at the duplexer refeed eject sensor. A5: Paper does not pass the duplexer refeed rear edge sensor. A6: Paper does not pass the duplexer refeed eject sensor. A7: Duplexer overflow (Third sheet is commanded when second sheet remains.) A8: Duplexer drive signal output from the printer while paper is transported turns off. A9: Paper remains in the duplexer when power is turned on. AA: The rear cover of the duplexer is opened while paper is transported. B1 to B3, C1: Reserved E0: Paper misfeed occurs due to forced stop when an error occurs during printing. (such as opening of a cover) F0 to FF: Paper misfeed by another cause
(9)	(a) Misfed paper width (hexadecimal)	0000 to FFFF [in 0.1 mm] Example: 73FA $($ hexadecimal $)=29690($ decimal $)=296.9 \mathrm{~mm}$
	(b) Misfed paper length (hexadecimal)	0000 to FFFF [in 0.1 mm] Example: A8C0 $($ hexadecimal $)=43200($ decimal $)=432.0 \mathrm{~mm}$

1-5-1 Paper misfeed detection

(1) Paper misfeed indication

When a paper misfeed occurs, the printer immediately stops printing and displays the paper misfeed message on the operation panel. To remove paper misfed in the printer, open the front cover or the rear cover or pull out the paper cassette.

Figure 1-5-1 Paper misfeed message display

Figure 1-5-2 Paper misfeed detection

1-5-2 Self-diagnosis

(1) Self-diagnostic function

This printer is equipped with a self-diagnostic function. When a problem is detected, the printer stops printing and an error message is displayed on the operation panel. An error message consists of a message prompting contact to service personnel, total print count, and a four-digit error code (2 digits for F0 only) indicating the type of the error. (The display varies a little with the type of the error.)

Figure 1-5-3 Error message display

(1-1) Error code 2000 [E1] (main motor error)

Detection conditions

- The main motor ready signal (MOTRDYN) does not become ready (low level) a specified time after the main motor drive signal (MOTONN) is turned on.
- The main motor ready signal (MOTRDYN) does not become ready (low level) a specified time after the main motor drive signal (MOTONN) is turned off.

Corrective measures

(1-2) Error code 4000 [E2] (polygon motor error)

Detection conditions

- The polygon motor ready signal (MOTRDYN) does not become ready (L level) within a specified time after the polygon motor drive signal (POLONN) is turned on (L level).

Corrective measures

(1-3) Error code 4200 [E3] (laser output error)

Detection conditions

- The pin photo signal (PDN) is not output within a specified time after the polygon motor ready signal (MOTRDYN) becomes ready (L level).

Corrective measures

(1-4) Error code 6000 [E4] (fixing heater lamp/fixing thermistor error)

Detection conditions

- The fixing thermistor disconnection detection circuit in the engine/high voltage PWB outputs the disconnection detection signal (THDEAD) to the CPU more than a specified time after power is turned on.
- The fixing temperature does not rise at least $1^{\circ} \mathrm{C}$ when the fixing heater lamp is continuously on for approximately 20 seconds during printer warm-up or in the standby mode.
- The fixing temperature does not rise at least $1^{\circ} \mathrm{C}$ when the fixing heater lamp is continuously on for approximately 15 seconds during printing.
- The fixing temperature does not lower when the fixing heater lamp is off for a specified time or more.
* The fixing temperature is the average value calculated using the input voltage from the fixing thermistor detected several times in a specified time to avoid influence of noise and so on.

Corrective measures

Cautions
Be careful when handling the fixing unit because it is hot.
Take care not to get an electric shock because AC power is supplied from the power source PWB to the fixing unit.

(1-5) Error code 6020 [A2] (abnormally high fixing temperature error)

Detection conditions

- The fixing heater lamp runaway protection circuit in the engine/high voltage PWB outputs continuously the abnormally high temperature detection signal (HTEMPN) to the CPU for a longer time than specified.

Corrective measures

Cautions
Be careful when handling the fixing unit because it is hot
Take care not to get an electric shock because AC power is supplied from the power source PWB to the fixing unit.

(1-6) Error code 6400 [A0] (fixing heater lamp control zero-cross signal detection error) Detection conditions

- The zero-cross signal (ZCROSS) that is output from the power source PWB and input to the CPU on the engine/high voltage PWB is not input for a specified time.

Corrective measures

* Possible defective locations
(causes)
--------------- -
-Engine/high voltage PWB
1- Power source PWB
- Replace either or both of the power source PWB and the engine/high voltage PWB. (See pages 1-6-29 and 26.)

(1-7) Error code F0 [F0] (communication error between the operation panel PWB and main PWB) Detection conditions

- Serial communication between the operation panel PWB and the main PWB malfunctions.

Corrective measures

(1-8) Error code F010 [F1] (code ROM checksum error)

Detection conditions

- Checksum of the code ROM PWB attached to the socket (YS1) on the main PWB malfunctions.

Corrective measures

(1-9) Error code F020 [F2] (main PWB RAM checksum error)

Detection conditions

Checksum in the standard RAM mounted on the main PWB or in optional expansion memory is not correct.

Corrective measures

(1-10) Error code F030 [F3] (main PWB controller error)
 \section*{Detection conditions}

- The controller (CPU) on the main PWB malfunctions.

Corrective measures

* Possible defective locations
(causes)
- - Main PWB
- Replace the main PWB. (See page 1-6-25.)
(1-11) Error code F040 [E0] (communication error between engine/high voltage PWB and main PWB controller)

Detection conditions

- Communication between the CPU on the engine/high voltage PWB and the controller (CPU) on the main PWB malfunctions.

Corrective measures

(1-12) Error code F050 [E6] (engine/high-voltage flash memory checksum error) Detection conditions

- Checksum of the program built in the CPU on the engine/high voltage PWB is not correct.

Corrective measures

* Possible defective locations
(causes)
- Engine/high voltage PWB
- - - - - - - _ _ _ _ - - _ -
- Replace the engine/high voltage PWB. (See page 1-6-26.)
(1-13) Error code F080 [E6] (system firmware download error)
Detection conditions
- Checksum is not correct when system firmware is downloaded.
- The flash memory is empty.

Corrective measures

* Possible defective locations
(causes)
- Main PWB
- Code ROM PWB
- Downloaded firmware
- Downloading tools
- Replace either or both of the main PWB and the code ROM PWB. (See page 1-6-26.)
- Check to see if the downloaded firmware is proper.
- Check to see if any of downloading tools (memory card, computer, printer cable, etc.) malfunctions.

(1-14) Error code 0420 [C0] (serial communication error between paper feeder and engine/high voltage PWB) Detection conditions

- Communication ready signal time-out occurs continuously more than specified times in serial communication with an optional paper feeder that is recognized by the CPU on the engine/high voltage PWB.
- Inconsistency of values in serial communication data occurs more than specified times.

Corrective measures

(1-15) Error code 1210 [C2] (duplexer slide guide home position detection error)

Detection conditions

- The duplexer drive PWB of the optional duplexer cannot detect the home position of the slide guide.

Corrective measures

(1-16) Error code 2610 [B2] (paper feeder 1 feed motor error)
 Detection conditions

- When the paper feeder drive PWB of the optional paper feeder 1 drives the feed motor, no proper clock pulse is input from the feed motor clock sensor.

Corrective measures

(1-17) Error code 2620 [B3] (paper feeder 2 feed motor error)

Detection conditions

- When the paper feeder drive PWB of the optional paper feeder 2 drives the feed motor, no proper clock pulse is input from the feed motor clock sensor.

Corrective measures

- Same as error code 2610 [B2]

(1-18) Error code 2630 [B4] (paper feeder 3 feed motor error)

 Detection conditions- When the paper feeder drive PWB of the optional paper feeder 3 drives the feed motor, no proper clock pulse is input from the feed motor clock sensor.

Corrective measures

- Same as error code 2610 [B2]

(1-19) Error code 2640 [B5] (paper feeder 4 feed motor error) Detection conditions

- When the paper feeder drive PWB of the optional paper feeder 4 drives the feed motor, no proper clock pulse is input from the feed motor clock sensor.

Corrective measures

- Same as error code 2610 [B2]

1-5-3 Electrical problems

Problem	Causes	Check procedures/corrective measures
(1) Even if the top cover is closed, the message "Close top cover" remains.	Defective top cover interlock switch.	If 24 V DC is not output to pin No. 6 of the YC4 connector on the engine/high voltage PWB when the top cover is closed, replace the engine/high voltage PWB. (See page 1-6-26.)
	Malfunctioning interlock rod that interfaces between the top cover and the top cover interlock switch.	Check to see if the interlock rod malfunctions. If it malfunctions, repair it.
	Defective engine/high voltage PWB.	Replace the engine/high voltage PWB. (See page 1-6-26.)
(2) Even if the rear cover is closed, the message "Close rear cover" remains.	Defective rear cover interlock switch.	If 24 V DC is not output to pin Nos. 1 and 2 of the CN3 connector on the power source PWB when the rear cover is closed, replace the power source PWB. (See page 1-6-29.)
	Malfunctioning rear interlock rod that interfaces between the rear cover and the rear cover interlock switch.	Check to see if the rear interlock rod malfunctions. If it malfunctions, repair it.
	Defective engine/high voltage PWB.	Replace the engine/high voltage PWB. (See page 1-6-26.)
(3) The message "Paper Jam" remains.	Paper pieces remain near the registration sensor or the eject sensor.	Check the locations near the registration sensor and the eject sensor and remove any paper pieces.
	Malfunctioning actuator of the registration sensor.	Check to see if the actuator of the registration sensor malfunctions or is damaged. If it malfunctions, repair or replace it.
	Defective registration sensor.	Replace the engine/high voltage PWB. (See page 1-6-26.)
	Malfunctioning actuator of the eject sensor.	Check to see if the actuator of the eject sensor malfunctions or is damaged. If it malfunctions, repair or replace it.
	Defective connection between the eject sensor and the engine/high voltage PWB.	Check to see if the harness (S02828) between the eject sensor and the engine/high voltage PWB is damaged or if the connector YC11 of the engine/high voltage PWB is improperly connected. If any problem is found, repair the relevant component.
	Defective eject sensor.	If the level at pin No. 2 of the YC11 connector on the engine/ high voltage PWB remains low when the actuator of the eject sensor is not operating, replace the eject sensor.
	Defective engine/high voltage PWB.	Replace the engine/high voltage PWB. (See page 1-6-26.)
(4) The message "Face-down tray paper full" remains.	Malfunctioning actuator of the face-down tray paper full sensor.	Check to see if the actuator of the face-down tray paper full sensor malfunctions or is damaged. If it malfunctions, repair or replace it.
	Defective connection between the face-down tray paper full sensor and the engine/high voltage PWB.	Check to see if the harness (S02815) between the face-down tray paper full sensor and the engine/high voltage PWB is damaged or if the connector YC13 of the engine/high voltage PWB is improperly connected. If any problem is found, repair or replace the relevant component.

Problem	Causes	Check procedures/corrective measures
(4) The message "Face-down tray paper full" remains.	Defective face-down tray paper full sensor.	If the level at pin No. 2 of the YC13 connector on the engine/ high voltage PWB remains low when the actuator of the facedown tray paper full sensor is not operating, replace the facedown tray paper full sensor.
	Defective engine/high voltage PWB.	Replace the engine/high voltage PWB. (See page 1-6-26.)
(5) The paper size is not recognized as the size set with the paper size dial of the cassette.	Defective cassette size switch.	Check to see if the level at pin Nos. 1 (CAS2), 2 (CAS1), and 4 (CAS0) of the YC7 connector on the engine/high voltage PWB changes to H or L when each cassette size switch is pressed. If any problem is found, replace the cassette size switch.
	Defective connection between the cassette size switch and the engine/high voltage PWB.	Check to see if the harness (S02821) between the cassette size switch and the engine/high voltage PWB is damaged or if the connector YC7 on the engine/high voltage PWB is improperly connected. If any problem is found, repair or replace the relevant component.
	Defective engine/high voltage PWB.	Replace the engine/high voltage PWB. (See page 1-6-26.)
(6) The message "Self test" remains when the printer is started.	Defective main PWB.	Replace the main PWB. (See page 1-6-25.)
(7) No message is displayed when the power switch is turned on. (All dots of LCD are on.)	Defective main PWB.	Replace the main PWB. (See page 1-6-25.)
	Defective code ROM PWB on the main PWB.	Replace the code ROM PWB.
	Defective operation panel PWB.	Replace the operation panel PWB.
(8) No message is displayed when the power switch is turned on. (All dots of LCD are off.)	Defective power cord connection.	Check to see if the power cord is securely connected to the outlet and the printer AC inlet.
	Defective power cord.	Replace the power cord.
	Defective power source PWB.	Replace the power source PWB. (See page 1-6-29.)
	Defective main PWB.	Replace the main PWB. (See page 1-6-25.)
	Defective operation panel PWB.	Replace the operation panel PWB.
	Defective connection between the main PWB and the engine/high voltage PWB.	Check to see if the harness (S02833) between the main PWB and the engine/high voltage PWB is damaged or if the connector YC7 on the main PWB is improperly connected. If any problem is found, repair the relevant component.
	Short circuit of electric wiring occurs in any electric part and the overcurrent detection function of the power source PWB stops output of 5 V DC and 24 V DC power supply.	Check to see if any electric part or wiring is damaged. If any problem is found, repair or replace the relevant component.

1-6-1 Precautions for assembly and disassembly

(1) Precautions

- Be sure to turn the power switch off and disconnect the power plug before starting disassembly.
- When handling PWBs (printed wiring boards), do not touch connectors with bare hands. It will damage the PWB.
- Do not touch any PWB containing ICs with bare hands or any object prone to static charge.
- Use the following testers when measuring voltages:

Hioki 3200
Sanwa MD-180C
Sanwa YX-360TR

1-6-2 Covers

(1) Detaching and refitting the top cover

Procedure

1. Open the front and top covers and remove the two screws.
2. Push the top cover to rear, and remove the two inner hooks.
3. Remove one connector from the operation panel PWB, and remove the top cover.

Figure 1-6-1

(2) Detaching and refitting the left cover

Procedure

1. Remove the top cover (see page 1-6-2).
2. Remove the rear cover (see page 1-6-5).
3. Draw the paper cassette.
4. Remove the four inner hooks and remove the left cover

Figure 1-6-2
(3) Detaching and refitting the right cover

Procedure

1. Remove the top cover (see page 1-6-2).
2. Remove the rear cover (see page 1-6-5).
3. Draw the paper cassette.
4. Remove one screw and then remove the optional interface slot cover.
5. Remove the four inner hooks and remove the right cover.

Figure 1-6-3
(4) Detaching and refitting the rear cover

Procedure

1. Open the rear cover and remove the axes from holes of the frame.

Figure 1-6-4

(5) Detaching and refitting the front cover

Procedure

1. Open the front cover.
2. Push the claws and then pull up the right and left hinge pins.
3. Remove the front cover.

Figure 1-6-5

1-6-3 Paper feed section

(1) Detaching and refitting the feed and pickup rollers

Perform the following procedure when the feed roller or pickup roller is to be checked or replaced.

Procedure

1. Draw the paper cassette.
2. Push the stopper and then slide the shaft to the stopper side.
3. Remove the feed roller or pickup roller.
4. Replace or check the feed/pickup roller.
5. Refit all the removed parts.

Figure 1-6-6

(2) Detaching and refitting the paper feed unit

Perform the following procedure when the paper feed unit is to be checked or replaced.

Procedure

1. Remove the top cover (see page 1-6-2).
2. Remove the left cover (see page 1-6-3).
3. Remove the right cover (see page 1-6-4).
4. Remove one connector from the engine/high voltage PWB.

Figure 1-6-7
5. Remove the hook of ground spring
6. Remove the feed clutch and bush.

Figure 1-6-8
7. Turn the bottom of the printer upward.
8. Remove the two screws and the remove the paper feed unit.
9. Refit all the removed parts.

Figure 1-6-9
(3) Detaching and refitting the MP tray feed roller

Perform the following procedure when the MP tray feed roller is to be checked or replaced.

Procedure

1. Remove the process unit.
2. Remove one stop ring.
3. Remove the MP tray feed roller from the shaft.
4. Replace or Check the MP tray feed roller.
5. Refit all the removed parts.

Figure 1-6-10

(4) Detaching and refitting the MP tray feed unit

Perform the following procedure when the MP tray feed unit is to be checked or replaced.

Procedure

1. Remove the top cover (see page 1-6-2).
2. Remove the left cover (see page 1-6-3).
3. Remove the right cover (see page 1-6-4).
4. Remove the MP tray feed roller (see page 1-6-10).
5. Remove the stop ring.

Figure 1-6-11
6. Remove the hook of ground spring.
7. While opening the claw, remove the MP tray feed pulley.
8. Remove one bush.

Figure 1-6-12
9. Remove the two connectors from the engine/ high voltage PWB.

Figure 1-6-13
10. Remove the two screws and then the MP tray feed unit.
11. Replace or check the MP tray feed unit.
12. Refit all the removed parts.

Figure 1-6-14

(5) Detaching and refitting the retard roller

Perform the following procedure when the retard roller is to be checked or replaced.

Procedure

1. Draw the paper cassette.
2. Remove the retard roller holder from the paper feed cassette.
3. Remove the retard roller from the holder.
4. Replace or check the retard roller.
5. Refit all the removed parts.

Retard roller holder

Figure 1-6-15

FS-6020

(6) Detaching and refitting the drive assembly

Perform the following procedure when the drive assembly is to be checked or replaced.

Procedure

1. Remove the three hooks of ground springs.
2. Remove the feed clutch and middle feed clutch.

Figure 1-6-16
3. Remove the four connectors from the main PWB and one connector from the main motor.
4. Remove the four screws and then the drive assembly.
5. Replace or check the drive assembly.

6 . Refit all the removed parts.

Figure 1-6-17

1-6-4 Laser scanner unit section

(1) Detaching and refitting the laser scanner unit

Perform the following procedure when the laser scanner unit is to be checked or replaced.

Procedure

1. Remove the top cover (see page 1-6-2).
2. Remove the right cover (see page 1-6-4).
3. Remove the two connectors from the main PWB and one connector from the laser scanner unit.
4. Remove the four screws and then remove the laser scanner unit.
5. Replace or check the laser scanner unit.
6. Refit all the removed parts.

Figure 1-6-18

1-6-5 Process unit section

(1) Detaching and refitting the main charger unit

Perform the following procedure when the main charger unit is to be checked or replaced.

Procedure

1. Remove the process unit.
2. Push the claw and remove the cap.
3. While sliding the main charger unit slightly and then pull it out.
4. Check or replace the main charger unit.
5. Refit all the removed parts.

Figure 1-6-19

1-6-6 Transfer/separation section

(1) Detaching and refitting the transfer roller and separation charger unit

Perform the following procedure when the transfer roller or separation charger unit is to be checked or replaced.

Procedure

1. Remove the process unit.
2. Open the upper paper chute.
3. While sliding the lower paper guide and then remove the hooks.
4. Remove the transfer roller.
5. Remove the transfer roller gear Z18 from the transfer roller.
6. Remove the four hooks and then remove the separation charger unit.
7. Check or replace the transfer roller/separation charger unit.
8. Refit all the removed parts.

Figure 1-6-20

1-6-7 Fixing section

(1) Detaching and refitting the fixing unit

Perform the following procedure when the fixing unit is to be checked or replaced.

Procedure

1. Remove the top cover (see page 1-6-2).
2. Remove the left cover (see page 1-6-3).
3. Remove the right cover (see page 1-6-4).
4. Remove the rear cover (see page 1-6-5).
5. Remove one connector from the power source PWB and one connector from the engine/high voltage PWB.
6. Remove the two screws and then remove the fixing unit.
7. Check or replace the fixing unit.
8. Refit all the removed parts.

Figure 1-6-21

(2) Detaching and refitting the fixing heater lamp

Perform the following procedure when the fixing heater lamp is to be checked or replaced.

Procedure

1. Remove the fixing unit (see page 1-6-18).
2. Remove the two screws and then divide into the upper fixing frame and the lower fixing frame.

Figure 1-6-22
3. Remove one screw and then the terminal.

Figure 1-6-23
4. Remove one screw and then pull the fixing heater lamp.
5. Check or replace the fixing heater lamp.
6. Refit all the removed parts.

Figure 1-6-24

(3) Detaching and refitting the heat roller

Perform the following procedure when the heat roller is to be checked or replaced.

Procedure

1. Remove the fixing unit (see page 1-6-18).
2. Remove the fixing heater lamp.
3. Pull the left and right heat roller bushes up and then remove the heat roller.
4. Remove the heat roller gear Z36 and left and right heat roller bushes from the heat roller.
5. Check or replace the heat roller.
6. Refit all the removed parts.

Figure 1-6-25

(4) Detaching and refitting the press roller

Perform the following procedure when the press roller is to be checked or replaced.

Procedure

1. Divide the fixing unit into the upper fixing frame and the lower fixing frame (see page 1 -6-19).
2. Remove the press roller from the lower fixing assembly.
3. Check or replace the press roller.
4. Refit all the removed parts.

Figure 1-6-26

(5) Detaching and refitting the fixing thermistor and separator

Perform the following procedure when the fixing thermistor and separator are to be checked or replaced.

Procedure

1. Divide the fixing unit into the upper fixing frame and the lower fixing frame (see page 1 -6-19).
2. Remove one screw.
3. Push the two claws and then remove the upper eject guide.

Figure 1-6-27
4. Remove one screw and then the fixing thermistor.
5. Lift the separator upwards and pull it out.
6. Check or replace the fixing thermistor and separator.
7. Refit all the removed parts.

Figure 1-6-28

(6) Detaching and refitting the fixing thermostat

Perform the following procedure when the fixing thermostat is to be checked or replaced.

Procedure

1. Remove the heat roller (see page 1-6-24).
2. Remove the two screws and then the terminal plate and round terminal.
3. Remove the fixing thermostat.
4. Check or replace the fixing thermostat.
5. Refit all the removed parts.

Figure 1-6-29

1-6-8 PWBs

(1) Detaching and refitting the main PWB

Perform the following procedure when the main PWB is to be checked or replaced.

Procedure

1. Remove the top cover (see page 1-6-2).
2. Remove the left cover (see page 1-6-3).
3. Remove the right cover (see page 1-6-4).
4. Remove all (ten) connectors from the main PWB.
5. Remove the five screws and then the main PWB cover.

Figure 1-6-30
6. Remove the seven screws and then the main PWB.
7. Check or replace the main PWB.
8. Refit all the removed parts.

Figure 1-6-31

FS-6020

(2) Detaching and refitting the engine/high voltage PWB

Perform the following procedure when the engine/high voltage PWB is to be checked or replaced.

Procedure

1. Remove the top cover (see page 1-6-2).
2. Remove the left cover (see page 1-6-3).
3. Remove the right cover (see page 1-6-4).
4. Remove all (nine) connectors from the engine/high voltage PWB
5. Remove the power source PWB (see page 1-6-28).

Figure 1-6-32
6. Remove the two connectors from the main PWB and one connector from the main motor.

Figure 1-6-33
7. Remove the feed unit (see page 1-6-8).
8. Remove the middle roller guide.
9. Remove the seven screws and then the bottom frame plate.

Figure 1-6-34
10. Remove the two connectors from the engine/ high voltage PWB.
11. Remove the two screws and then the engine/ high voltage PWB.

Figure 1-6-35
12. Remove EEPROM (U3) from the socket of the engine/high voltage PWB.
13. Replace EEPROM (U3) to the socket of the new engine/high voltage PWB.
14. Attach the new engine/high voltage PWB and refit all the removed parts.

Figure 1-6-36

(3) Detaching and refitting the power source PWB

Perform the following procedure when the power source PWB is to be checked or replaced.

Procedure

1. Remove the top cover (see page 1-6-2).
2. Remove the left cover (see page 1-6-3).
3. Remove the two connectors.
4. Remove the five screws and then the power source PWB.

* Power source PWB and engine/high voltage PWB are connected directly with the PWB connector.

5. Check or replace the power source PWB.
6. Refit all the removed parts.

Figure 1-6-37

1-7-1 Downloading firmware

The system and engine firmware can be upgraded by downloading new firmware. Downloading can be made either by directly sending the new firmware from PC via the parallel interface or using a memory card that contains the new firmware. The message data for the operation panel display is also downloadable so that a new message language is appended for the operation panel. The message data should be downloaded directly from PC.

(1) Format for the firmware files

The file names for the firmware files are coded as follows

System firmware file name example

s96k9100PS3.bcmp

— Version code: Version 91.00
Kyocera Mita ID code
Product code: 96= FS-6020

System firmware

Engine firmware file name example

E96KA001.x

Operation panel message data file name example

Table 1-7-1

FS-6020

(2) Downloading firmware via the parallel interface

To download the system or engine firmware using the parallel interface, use the procedure below. You can download both the system and engine firmware at a time.

Connecting the parallel printer cable

1. Turn printer and PC power off.
2. Connect the parallel printer cable between the PC and the printer.

Downloading the firmware files

1. Turn printer power on.
2. Confirm that display (1) is displayed.
3. At the DOS prompt, enter command (2).

* Enter UPGR'SYS' in capitals.

4. Confirm that message display (3) is displayed.
5. At the DOS prompt, enter command (4) so that the system firmware (example: s $96 \mathrm{~K} 9100 . \mathrm{bcmp}$) and the engine firmware (example: E96KA005.x) are copied to the printer.
6. Message display (5) is displayed during downloading. When message display (6) is displayed to indicate downloading is finished, turn printer power off, then on.
7. Confirm that message display (7) is displayed after warm-up.

Confirming upgrading

1. Print a status page. (See page 1-4-2.)
2. Check that the status page shows the updated firmware version.

Figure 1-7-1

Figure 1-7-2

(3) Downloading firmware using the memory card

The procedure below provides how to download firmware from a memory card. A memory card can hold both the system and engine firmware together for downloading them at a time.

Formatting the memory card

1. Turn printer power on.
2. Insert the memory card into the printer's memory card slot.

Figure 1-7-3
3. Press MENU key on the printer's operation panel and carry out the memory card formatting procedure (1).
4. When formatting is complete, turn printer power off.

Figure 1-7-4
5. Remove the formatted memory card from the memory card slot.

Figure 1-7-5

Copying firmware files to the memory card

1. Insert the memory card to the PC's slot or to the adaptor.
2. Copy the firmware files to download to the root directory of the memory card.
3. Remove the memory card from the PC's slot or the adaptor.

Downloading firmware files

1. Confirm that the printer's power switch is set to off.
2. Insert the memory card into the printer's memory card slot.

Figure 1-7-6

Figure 1-7-7

Figure 1-7-8

(4) Downloading the message data

To download the new message data, progress the following procedures.

Connecting the parallel printer cable

1. Turn OFF the power supply switch to the printer and computer.
2. Connect the parallel printer cable between the computer and printer.

Downloading the message data file

1. Turn ON the power to the printer.
2. Check that the message indication (1) is indicated.
3. Input the command (2) following the DOS prompt indication.

* Enter BOOST' SPR' in capitals.

4. Check that the message indication (3) is indicated.
5. Input the command (4) following the DOS prompt indication and copy the message data file to the printer (e.g.; dm9602 . spa).
6. The message indication (5) is indicated while downloading the data file. When the message indication (6) is indicated, which shows the end of downloading, turn OFF the power switch once and then turn it on again.
7. Check that the message indication (7) is indicated after warming up the printer.

Checking the update

1. Print the status page. (See page 1-4-2.)
2. Print the status page to check that the firmware version has been updated.

Figure 1-7-9
(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 1-7-10

2-1-1 Paper feed/conveying section

Paper feed/conveying section consists of the paper feed unit that feeds paper from the paper cassette and the MP tray paper feed unit that feeds paper from the MP tray, and the conveying section that conveys the fed paper to the transfer/ separation section.

(1) Paper feed section/paper cassette

Paper cassette is the universal type that is applicable to various paper sizes by adjusting the paper guides and stopper and approximate 250 pages can be put in.
Mechanism in the paper cassette consists of the cassette actuator board that lifts the paper in order to let it touch the pickup roller and the retard roller that prevents papers from multiple feeding. Paper that is drawn out by the rotation of pickup roller of the paper feed unit is then sent in between the feed roller and the retard roller. Function of the built-in torque limiter in the retard roller gives weak resistance force against the rotation. Normally, when only a page is drawn out by the rotation of pickup roller, the paper is conveyed to the printer by the rotation of feed roller on its own. If the pickup roller drew out two lapped pages somewhy, the upper paper is conveyed by the feed roller and the lower paper stays due to the rotation resistant force of the retard roller because the friction force between papers is smaller than the rotation resistance force of the retard roller and then the multiple paper feed can be prevented.

Figure 2-1-1 Paper feed section
(1) Pickup roller
(2) Feed roller
(3) Retard roller
(4) Retard roller holder
(5) Bottom plate
(6) Cassette base
(7) Feed guide

Figure 2-1-2 Paper feed section block diagram
(2) MP tray feed section

The MP tray can contain about 100 pages. Feeding is performed by the rotation of the MP tray feed roller from the MP tray. Function of the MP tray friction pad prevents papers from multiple feeding.

(1) MP tray feed roller
(2) MP tray middle pulley
(3) MP tray feed guides
(4) MP tray friction pad

Figure 2-1-3 Paper feeding from the MP tray

Figure 2-1-4 MP tray feed section block diagram

(3) Conveying section

The conveying section consists of the parts shown in the following illustration and conveys papers from the cassette or the MP tray to the transfer/separation section when papers are fed, or while refeeding when the optional duplexer is operated. Paper by feeding or refeeding is conveyed by the middle feed roller to the position where the registration sensor is turned on, and then sent to the transfer/separation section by the upper registration roller and lower registration roller.

Figure 2-1-5 Conveying section

Figure 2-1-6 Conveying section block diagram

2-1-2 Process unit section

For the process unit, many sections related to the printing process are gathered up as one unit such as the development section, main charger section, drum section, cleaning section and toner container TK-400. The electrical part in the process unit is only the zener diode PWB that sets the grid electrostatic potential, and only the high voltage terminal of the main charger and the drive link with the drive group gears are provided between the process unit and main unit frame because the toner sensor is equipped with the main unit frame side.

(1) Development section

Development section consists of the parts in the following illustration. The toner supplied from the toner container TK-400 is agitated after developing and agitating at the mixer section that consists of the development agitator's front to electrostatically charge and sent to the developing roller. The development roller consists of the rotating developing sleeve and the developing magnet (roller) that is fixed inside of the sleeve. The toner is attracted by a magnetic force of the developing magnet to the surface of the developing sleeve and then exposed to the drum side by the rotation of the developing sleeve.

(1) Developing sleeve
(2) Developing magnet
(3) Developing blade
(4) Rear developing agitator
(5) Front developing agitator
(6) Developing guide
(7) Toner container TK-400

Figure 2-1-7 Development section

Figure 2-1-8 Development section block diagram

Formation of the magnetic toner brush

The developing roller consists of the developing magnet (roller) equipped with three magnetic poles and the developing sleeve. The magnetic toner brush is formed on the magnetic pole N1 of the developing sleeve. The height of this magnetic toner brush is restricted by the developing blade, and the development depends on the pole position of the developing magnet (roller) and the position of the developing blade.
In addition, the developing bias is loaded onto the developing magnet, which is output from the engine/high voltage PWB providing the enhanced contrast of images.

Magnetic force
$\mathrm{N} 1: 870 \pm 50 \times 10^{-4} \mathrm{~T}$
S1: $710 \pm 50 \times 10^{-4} \mathrm{~T}$
S2: $750 \pm 50 \times 10^{-4} \mathrm{~T}$

Figure 2-1-9 Formation of the magnetic brush

(2) Main charger/drum section

Main charger unit consists of the main charger shield, main charger wire, grid and wire cleaner, and electrostatically charges the drum surface uniformly to prepare for the formation of electrostatic latent images by the irradiation of laser light. The grid acts so that the drum surface voltage is constant.

(1) Main charger wire
(2) Main charger grid
(3) Main charger shield
(4) Wire cleaner
(5) Drum

Figure 2-1-10 Main charger unit/drum section

Figure 2-1-11 Main charger unit

Figure 2-1-12 Main charger section block diagram

2-1-3 Laser scanner unit section

(1) Laser scanner unit

Print data is processed as the image data by the main PWB and sent to the laser scanner unit (LSU). The laser scanner unit forms the electrostatic latent image on the drum surface by turning on/off the laser light according to the image data.

Figure 2-1-13 Laser scanner unit

1. Laser diode Emits the diffused invisible light laser.
2. Collimator lens . Changes the diffused laser light to the parallel light.
3. Cylindrical lens . Corrects the vertical angle when the laser light hits the one surface of polygon mirror.
4. Polygon motor ... Polygon motor has a 6 face mirror. Individual mirror corresponds to the
5. f- θ main lens width of scan lines on the drum that is scanned by the laser light.
6. $f-\theta$ sub lens See $f-\theta$ sub lens as follows.
The main and sub f- θ lenses equalize the focus distortion caused around the edge of drum. The effective length drawn (Fig.2-1-14 (A) and (B) on the next page) on the drum by the laser light is longer as the laser reaches further to the end of the drum and then the distance shown by (A) and (B) are not identical (A)>(B). These distances can be equal by positioning the $f-\theta$ lens between the polygon mirror and the drum. (A) = (B)
7. Direction change mirror
Changes the direction so that the laser light beams to the drum vertically. Diffused laser light now accurately can beam to the drum.
8. Protective glass Prevents dust and dirt from entering the laser scanner unit.
9. SOS lens Bents the first shot of laser scanning to the pin photo sensor direction.
10. Pin photo sensor Receives the laser light through the SOS lens as mentioned above and then outputs as the horizontal synchronous signal.

Figure 2-1-14 f- θ lens

Image resolution

This printer can print out images in the image resolution of 600×600 dpi and also in the Fast1200 mode that provides the image resolution with finer density. The Fast1200 mode outputs the further microscopic dots and improves the resolution, and furthermore it is possible to express the halftone in addition to depicture the monochrome images by controlling the irradiation time of laser light.

Figure 2-1-15 Image resolution

Smoothing (KIR)

The printer applies the KIR (Kyocera Image Refinement) to the smoothing processing, which is the exclusive image processing technology developed by Kyocera Mita Corporation. This function corrects the jaggy part of image (jagged lines) on slant lines or curves, which is easy to notice, to the smooth line by embedding small dots.

Figure 2-1-16 Smoothing (KIR)

2-1-4 Transfer/separation section

Transfer/separation section consists of the transfer roller and separation charger brush. The transfer bias is loaded to the transfer roller by the high voltage output from the engine/high voltage PWB and the toner on the drum is attracted to the transfer roller side due to the electric potential difference and then transferred to the paper. The separation bias is loaded to the separation charger brush output from the engine/high voltage PWB acting to separate the paper with toner transferred from the drum.

(1) Transfer roller
(2) Separation charger brush

Figure 2-1-17 Transfer/separation section

Figure 2-1-18 Transfer/separation section block diagram

2-1-5 Cleaning section

The cleaning section consists of the following parts and removes the residual toner on the drum after transferring the toner from the drum to the paper and collects it as a waste toner. The eraser light emission removes the residual electrical charge on the drum surface.
The cleaning blade is always applied to the drum to scrape off the residual toner. The scraped toner is conveyed to the cleaner screw by the sweep roller as a waste toner. The cleaner screw sends the waste toner to the waste toner conveying belt that is attached to the outside of the frame drum. The waste toner conveying belt conveys the waste toner to the waste toner reservoir that is provided by separating the inside of the toner container.
The drum that the residual toner is removed is irradiated by the eraser lamp (PWB) light attached to the upper part of the process unit (the lower part of the laser scanner unit). The eraser lamp (PWB) consists of the LED array that corresponds to the length of drum, and it is designed to remove the residual electrostatic charge on the drum surface by irradiating the eraser light and then give the uniform charging on the drum by the main charger which is the next process.

(1) Cleaning blade
(2) Sweep roller
(3) Cleaner screw
(4) Frame drum
(5) Eraser lamp (PWB)

Figure 2-1-19 Cleaning/charge erasing section

Figure 2-1-20 Cleaning section block diagram

Toner container TK-400

Figure 2-1-21 Flow of toner

2-1-6 Fixing section

The fixing section consists of the following parts and fixes the toner that is transferred to the paper at the transfer/ separation section. The paper sent from the transfer/separation section is interleaved between the heat roller and the press roller. The heat roller is heated by the fixing heater lamp installed inside, and the toner is fused by heat and pressure and fixed onto the paper because the press roller is pressed by the fixing press spring.
The fixing thermistor detects the temperature of the surface on the heat roller heated by the fixing heater lamp and this temperature is controlled by the engine/high voltage PWB. If the fixing section shows extremely high temperature, the power line will be shut off and the fixing heater lamp is forced to turn off.
When fixing of toner is complete, the paper is separated from he heat roller by the separator and ejected to the eject/ feedshift section.

(1) Upper fixing frame
(2) Eject guide
(3) Heat roller
(4) Separator
(5) Fixing heater lamp
(6) Eject pulley
(7) Press roller
(8) Lower fixing frame
(9) Eject roller
(10) Upper eject guide
(11) Fixing actuator
(12) Eject sensor actuator
(13) Eject sensor

Figure 2-1-22 Fixing section

(1) Fixing thermostat
(2) Fixing thermistor
(3) Fixing heater lamp
(4) Heater roller gear Z36
(5) Fixing joint gear Z32
(6) Fixing idle gear Z22
(7) Eject gear Z22
(8) Eject roller
(9) Eject pulley
(10) Fixing press spring

Figure 2-1-23 Fixing unit

Figure 2-1-24 Fixing unit block diagram

2-1-7 Face-down eject/feedshift section

The face-down eject/feedshift section consists of the vertical path assembly that conveys the paper which is fixed with toner at the fixing section to the face-down tray, and the feedshift guide that operates when duplex printing is performed (when the optional duplexer is equipped).
Normally the feedshift guide is down since it does not operate, therefore the paper that came out of the fixing section is guided to the vertical path along the upper side of the feedshift guide and then ejected to the face-down tray by the rotation of the face-down roller.
During the duplex printing, the feedshift guide is raised operated by the feedshift solenoid in the duplexer, and the paper came out of the fixing section is guided to the inside of the duplexer along the lower surface of the feedshift guide.

(1) Rear cover
(2) Feedshift guide
(3) Pinch roller
(4) Face-down roller
(5) Face-down roller
(6) Face-down paper full sensor actuator
(7) Pinch roller
(8)Face-down tray

Figure 2-1-25 Face-down eject/feedshift section

Figure 2-1-26 Face-down eject/feedshift section block diagram

2-2-1 Electrical parts layout

(1) Main frame

Figure 2-2-1 Main frame

1. Main PWB [KP-935]	Controls the software such as the print data processing and provides the interface with computers.
2. Engine/high voltage PWB [KP-936]	Controls the input/output of electrical parts and generates the high voltage.
3. Power source PWB	Generates 24 V DC and 5 V DC power source. Controls the fixing heater amp.
4. Operation panel PWB [KP-938]	Indicates the LCD message display and LED indicators. Controls key inputs.
5. Paper gauge sensor (PWB) [KP-94	Consists of the paper gauge sensor 1 and 2.
6. Toner sensor (PWB) [KP-786]	Detects the toner in the toner container.
7. Eraser lamp (PWB) [KP-940]	Eliminates the residual electrostatic charge on the drum.
8. Power switch	Turns ON/OFF the AC power source.
9. Cassette size switch	Detects the paper size dial setting of the paper setting dial.
10. Top cover interlock switch	Shuts off 24 V power line when the top cover is opened.
11. Rear cover interlock switch	Shuts off 24 V power line when the rear cover is opened.
12. MP tray feed sensor	Detects paper misfeed in the MP tray.
13. Eject sensor	Detects paper misfeed in the fixing unit.
14. Registration sensor	Detects the timing of primary feeding.
15. Face-down tray paper full sensor	Detects the paper full in the face-down tray.
16. Paper gauge sensor 1 (PH1)	Detects the paper remaining amount level.
17. Paper gauge sensor 2 (PH2)	Detects the paper remaining amount level.
18. Main motor	Drives the entire machine.
19. Cooling fan motor	Cools the interior of machine.
20. Power source fan motor	Cools the peripheral area of the power source PWB.
21. Feed clutch	Controls the primary paper feed from the paper cassette.
22. Middle feed clutch	Controls the paper conveying at the conveying section.

23. Registration clutch

Controls the second paper feed.
24. MP tray feed solenoid

Controls the primary paper feed from the MP tray.
25. Optional interface connector 1 Connects the signal lead and power source cord with the optional paper feeder.
26. Optional interface connector 2 \qquad Connects the signal lead and power source cord with the optional duplexer.
27. AC inlet

Connects the AC power source.
(2) Process unit, laser scanner unit and fixing unit

Figure 2-2-2 Process unit, laser scanner unit and fixing unit

1. APC PWB [KP-986]	Controls the laser output.
2. PD PWB [KP-638]	Detects the horizontal synchronous signal.
3. Zener diode PWB [KP-945]	Adjusts the main charger grid electrostatic potential.
4. Polygon motor	Drives the polygon mirror.
5. Fixing heater lamp	Heats the heat roller.
6. Fixing thermostat	Shuts off the power source to the fixing heater lamp when the heat roller reaches extremely high temperature.
7. Fixing thermistor	Detects the temperature of the heat roller.

2-3-1 Power source PWB

Figure 2-3-1 Power source PWB block diagram

The power source PWB consists of the switching regulator section that is the main part, other zero cross signal detection circuit and fixing heater control circuit. The switching regulator circuit consists of the noise filter circuit, inrush current limit/ rectification circuit, switching control circuit, 5 V DC rectification/smoothing output circuit, 24 V DC rectification/smoothing circuit and overcurrent/overvoltage detection circuit, and this circuit converts the AC power input to the 5 V DC and 24 V DC power source by the switching operation and outputs it to the engine/high voltage PWB. The zero cross signal detection circuit detects the 0 V point (zero cross) of the AC wave form and outputs to the engine/high voltage circuit, and the engine/ high voltage PWB outputs the fixing heater lamp ON signal (HEATON) to the fixing heater lamp control circuit based on the timing of zero cross signal and controls the AC power loading to the fixing heater lamp.

Figure 2-3-2 Power source PWB silk-screen diagram

Connector	Pin No.	Signal	I/0	Voltage	Description
CN1	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~N} \end{aligned}$	LIVE NEUTRAL	I	$120 / 220-240 \mathrm{~V} \mathrm{AC}$	AC power input
AC inlet					
CN2	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	LIVE NEUTRAL	$\begin{aligned} & 0 \\ & - \\ & 0 \end{aligned}$	$\begin{aligned} & 120 / 220-240 \text { V AC } \\ & - \\ & 120 / 220-240 \text { V AC } \end{aligned}$	Power supply for fixing heater lamp Power supply for fixing heater lamp
Connected to the fixing heater lamp and fixing thermostat					
CN3					
Connected to the engine/high voltage PWB	$\begin{gathered} 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{gathered}$	$\begin{aligned} & +24 \mathrm{~V} 1 \\ & +24 \mathrm{~V} 1 \end{aligned}$ GND GND HVGND +24V2 ZCROSS HEATONN $+5 \mathrm{~V} 1$ $+5 \mathrm{~V} 1$ $+24 \mathrm{~V}$	$\begin{aligned} & 0 \\ & 0 \\ & - \\ & - \\ & - \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 24 \mathrm{~V} D C \\ & \\ & \text { Ground } \\ & \text { Ground } \\ & \text { Ground } \\ & 24 \mathrm{~V} \text { DC } \\ & 0 / 5 \mathrm{~V} \text { DC (pulse) } \\ & 0 / 5 \mathrm{~V} \text { DC } \\ & 5 \mathrm{~V} \mathrm{DC} \\ & 5 \mathrm{~V} \mathrm{DC} \\ & 24 \mathrm{~V} D C \end{aligned}$	24 V DC power output (via rear cover interlock switch) 24 V DC power output (via rear cover interlock switch) Ground Ground Ground for high voltage 24 V DC power output Zero-cross signal Fixing heater lamp ON signal 5 V DC power output 5 V DC power output 24 V DC power output

2-3-2 Engine/high voltage PWB

Figure 2-3-3 Engine/high voltage PWB block diagram

The engine/high voltage PWB consists mainly of CPU (U1) and it is primarily divided into the engine circuit section that controls the entire hardware such as the process and paper conveying mechanism and the high voltage circuit section that generates various high voltages to output during the process operation.

FS-6020
(1) Fixing heater lamp control circuit

Figure 2-3-4 Fixing heater lamp control circuit

The ON/OFF action of the fixing heater lamp is controlled by the fixing heater lamp lighting ON signal (HEATON) output from the No. 62 pin of CPU (U1) of the engine/high voltage PWB. When the HEATON signal reaches the H level, the photo triac (PC4) - Thyristor (CR1) turns on because the transistor (Q5) turns on and then the AC voltage is loaded to the fixing heater lamp.
The HEATON signal turns ON/OFF the photo triac (PC4) - Thyristor (CR1) being synchronized with the zero cross signal (ZCROSS) that is detected by the zero cross signal detection circuit on the power source PWB. The ZCROSS signal detects the zero cross point (0 V) where the AC power source changes between positive/negative domains and it is input to the No. 61 pin of the CPU (U1) of the engine/high voltage PWB. Since the ON/OFF operation of the photo triac (PC4) - Thyristor (CR1) is performed at the zero cross point (0 V), it can avoid the sharp change of current and restrain noises generated from the AC power source.
(2) Fixing heater lamp lighting runaway prevention - fixing thermistor disconnection detection circuit

Figure 2-3-5 Fixing heater lamp lighting runaway prevention fixing thermistor disconnection detection circuit

The fixing thermistor detection voltage (THERM) is input to the CPU (U1) and branched to input to the No. 6 pin of he comparator (U5-1). The comparator compares the THERM signal voltage with the voltage set at the No. 5 pin (= the voltage 3.2 V that the temperature $230^{\circ} \mathrm{C}$ is assumed in the case of unusually high temperature) by the divided voltage of resistors (R33 and R34). If the voltage at the No. 6 pin is higher than that of No. 5 pin, the output level of No. 7 pin is L. For the HEATON signal, the circuit that forcibly turns off the fixing heater lamp by the hardware-based method and forcibly makes the HEATON signal to L level regardless of controls by CPU (U1) is provided because the No. 7 pin is connected with the output line of the fixing heater lamp ON signal (HEATON). This circuit is provided for the purpose of fail safe, it usually monitors the unusual high temperature in the software system by the input voltage of the THERMA signal that is input to the No. 76 pin of CPU (U1), therefore, the circuit operates the control to turn off the fixing heater lamp before the mentioned circuit is activated and stops the machine, and then indicates the error code 6020 that shows the fixing high temperature failure according to the self diagnosis function.
(3) Interlock switch - eco-power circuit

Figure 2-3-6 Interlock switch - eco-power circuit

The 24 V DC power source line is shut off by the top cover interlock switch or the rear cover interlock switch that is turned OFF when the top cover or the rear cover is opened. At the same time, the 24 V DC power supply is stopped to the motor and clutch and it is also output to the CPU of the engine/high voltage PWB as the cover open detection signal.
The 24 V DC power is divided into five groups of $+24 \mathrm{~V},+24 \mathrm{~V} 1,+24 \mathrm{~V} 2,+24 \mathrm{~V} 3$ and +24 V 4 as follows, and the loads that supply the 24 V DC power source or the cover open detection signals are different.
(1) +24 V Cooling fan motor
(2) +24 V 1 Rear cover open detection signal (RCOVOPN)
(3) +24V2 Top cover open detection signal (TCOVOPN), paper feeder, duplexer and power source PWB (Fixing heater lamp control circuit)
(4) +24 V 3 Main motor, eraser, main PWB, polygon motor, feed clutch, MP tray feed clutch, middle feed clutch and MP tray feed solenoid
(5) $+24 \mathrm{~V} 4 \quad$ Engine/High voltage (High voltage section)

In the eco-power mode, the circuit shuts off the +24 V power source that is used by the printer unit in order to reduce the power consumption. In the eco-power mode, the eco-power mode signal (ECPOWER) becomes L level, which is output from the CPU of the engine/high voltage PWB. The signal at this level turns off the transistors (Q15, Q16) of the eco-circuit, accordingly the supply of +24 V 3 and +24 V 4 to the power line is shut off and the operation of connected load will stop.

4) Optional equipment identification circuit

Figure 2-3-7 Optional equipment identification circuit

The CPU (U1) of the engine/high voltage PWB outputs four optional equipment selection signals (SEL0-4) and specifies the 4 paper feeders and duplexer.
When it is required that the CPU (U1) of the engine/high voltage PWB controls the specified paper feeder or checks if the paper feeder is equipped, the combination of the selection signal (The illustration shows the selection case when the paper feeder 3 is selected), which is determined per paper feeder, is output. The combination to be input per stacked paper feeder will be different because crossing of signal leads and logical inversion are executed in the circuit of each paper feeder drive PWB. The CPU of the paper feeder drive PWB is programmed to react only when the level of SELO-4 signal is input in combination of (SELO=H, SELO=H, SELO=L) and reply to the CPU (U1) of the engine/high voltage PWB. Consequently, the CPU (U1) judges that the paper feeder on the level in question is not equipped if the said paper feeder does not reply even if the CPU (U1) output the SEL0-4 signal to the paper feeder to be specified. Only the duplexer will be selected when the SEL3 signal is set as H level.

Figure 2-3-8 Engine/high voltage PWB silk-screen diagram

Connector	Pin No.	Signal	I/O	Voltage	Description
YC1	1	$+5 \mathrm{~V}$	I	5 V DC	5 V DC power
Connected to the ROM writer	2	VPP		Ground	Ground
	3	WRSO	1	0/5 V DC(pulse)	Data input signal
	4	WRSI	0	0/5 V DC(pulse)	Data output signal
	5	SCK	1	0/5 V DC(pulse)	Clock signal for read/write
		RSTNGND	1	$0 / 5 \mathrm{~V}$ DCGround	Reset signal
	7				Ground
YC3	2	$\begin{aligned} & +24 \mathrm{~V} \\ & \text { FANDRN } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 0 / 24 \mathrm{~V} D \end{aligned}$	24 V DC power supply for cooling fan motor Cooling fan motor: On/Off
Connected to the cooling fan motor					
YC4	1	+24V1	1	24 V DC	24 V DC power input (via rear cover interlock switch) 24 V DC power input (via rear cover interlock switch)
Connected	2	+24V1	1	24 V DC	
to the	3	GND		Ground	Ground
power	4	GND	-	Ground	Ground
source	5	HVGND		Ground	Ground for high voltage
PWB	6	+24V2	1	24 V DC	24 V DC power input
	7	ZCROSS	1		Zero-cross signal
		HEATONN	O	0/5 V DC (pulse) $0 / 5 \mathrm{~V}$ DC	Fixing heater lamp ON signal5 V DC power input
	8 9	+5V1	1	$\begin{aligned} & 0 / 5 \mathrm{~V} \text { DC } \\ & 5 \mathrm{~V} \text { DC } \end{aligned}$	
	10	+5V1	1	5 V DC	5 V DC power input
	11	+24V	1	24 V DC	24 V DC power input
YC6	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	ANODE GND HANDSN	$\begin{aligned} & \mathrm{O} \\ & - \\ & \mathrm{i} \end{aligned}$	5 V DC Ground $0 / 5 \mathrm{~V}$ DC	5 V DC power supply for MP tray feed sensor Ground MP tray feed sensor: On/Off
Connected to the MP tray feed sensor					
YC7	1234	$\begin{aligned} & \text { CAS2 } \\ & \text { CAS1 } \\ & \text { GND } \\ & \text { CAS1 } \end{aligned}$	1I-I	$\begin{aligned} & 0 / 5 \mathrm{~V} \text { DC } \\ & 0 / 5 \mathrm{~V} \text { DC } \\ & \text { Ground } \\ & 0 / 5 \mathrm{~V} \text { DC } \end{aligned}$	Cassette size switch (SW2): On/Off Cassette size switch (SW1): On/Off Ground Cassette size switch (SW0): On/Off
Connected to the					
cassette size switch					
YC8	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$+5 \mathrm{~V} 1$ TNEMPN GND	$\begin{aligned} & \mathrm{O} \\ & \mathrm{I} \\ & - \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} \text { DC } \\ & 0 / 5 \mathrm{~V} \text { DC } \\ & \text { Ground } \end{aligned}$	5 V DC power supply for toner sensor toner sensor: On/Off Ground
Connected to the toner sensor					
YC9	12	$\begin{aligned} & +5 \mathrm{~V} 1 \\ & \text { PFANDRN } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { DC5V } \\ & \text { DC0V/3.75V/5V } \end{aligned}$	5 V DC power supply for power source fan motor Power source fan motor: High speed/Low speed/Off
Connected to the power source fan motor					
YC10	1234	$+5 \mathrm{~V} 3$ PAPVOL1 PAPVOL2 GND	0 1 1	$\begin{aligned} & 5 \text { V DC } \\ & 0 / 5 \mathrm{~V} \text { DC } \\ & 0 / 5 \mathrm{~V} \text { DC } \\ & \text { Ground } \end{aligned}$	5 V DC power supply for paper gauge sensor Paper gauge sensor 1: On/Off Paper gauge sensor 2: On/Off Ground
Connected					
to the paper					
gauge sensor					
YC11	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { EXITPAP } \\ & +5 \mathrm{~V} 1 \end{aligned}$	1	$\begin{aligned} & \text { Ground } \\ & 0 / 5 \mathrm{VDC} \\ & 5 \mathrm{~V} D C \end{aligned}$	Ground Eject sensor: On/Off 5 V DC power supply for eject sensor
Connected					

FS-6020

2-3-3 Main PWB

Figure 2-3-9 Main PWB block diagram

The main PWB consists mainly of CPU (U1) and primarily performs the printing data processing and interface controls with computers. The CPU (U1) outputs the laser light and executes printing following the code ROM (YS1) that stores the control programs being linked with the process and paper conveying mechanism that the engine/high voltage PWB controls.

Figure 2-3-10 Main PWB silk-screen diagram

Timing chart No. 3 Paper cassette feeding, two A3 size papers
MOTOR
(Main motor)
MHVDR
(Main charger)
THVVR
(Transfer charger)
FEDDR1
(Feed clutch)
MIDDR
(Middle feed clutch)
REGDR
(Registration clutch)
LASER
(Laser diode)
BIAS
(Developing bias)
ERASER
(Eraser lamp)
CHVON
SCANER
(Polygon motor)
SPVDR

© : Jam detection timing
Drum speed: $92.99 \mathrm{~mm} / \mathrm{s}$
Paper feeding speed: $94.12 \mathrm{~mm} / \mathrm{s}$
Printing speed: 11.59 ppm
MOTOR
(Main motor)
MHVDR
(Main charger)
THVDR
(Transfer charger)
FEDDR1
(Feed clutch)
MIDDR
(Middle feed clutch)
REGDR
(Registration clutch)
LASER
(Laser diode)
BIAS
(Developing bias)
ERASER
(Eraser lamp)
CHVON
SCANER
(Polygon motor)
SPVDR
(Sepration charger)
FEEDS
Drum speed:92.99 mm/s
Paper feeding speed: $94.12 \mathrm{~mm} / \mathrm{s}$
Printing speed: 17.43 ppm

MOTOR
(Main motor)
MHVDR
(Main charger)
THVDR
(Transfer charger)
FEDDR1
(Feed clutch)
MIDDR
(Middle feed clutch)
REGDR
(Registration clutch)
LASER
(Laser diode)
BIAS
(Developing bias)
ERASER
(Eraser lamp)
CHVON
SCANER
(Polygon lamp)
SPVDR

Timing chart No. 6 Paper cassette feeding, two letter size papers

© : Jam detection timing
Drum speed: $92.99 \mathrm{~mm} / \mathrm{s}$
Paper feeding speed: $94.12 \mathrm{~mm} / \mathrm{s}$
Printing speed: 20.00 ppm
MOTOR
(Main motor)
MHVDR
(Main charger)
THVDR
(Transfer charger)
FEDDR1
(Feed clutch)
MIDDR
(Middle feed clutch)
REGDR
(Registration clutch)
LASER
(Laser diode)
BIAS
(Developing bias)
ERASER
(Eraser lamp)
CHVON
SCANER
(Polygon motor)
SPVDR

Timing chart No. 8 Paper cassette feeding, two legal size papers

- $\boldsymbol{\text { :Jam detection timing }}$
Drum speed: $92.99 \mathrm{~mm} / \mathrm{s}$
Paper feeding speed: $94.12 \mathrm{~mm} / \mathrm{s}$
Printing speed: 13.36 ppm
MOTOR
(Main motor)
MHVDR
(Main charger)
THVVR
(Transfer charger)
FEDDR1
(Feed clutch)
MIDDR
(Middle feed clutch)
REGDR
(Registration clutch)
LASER
(Laser diode)
BIAS
(Developing bias)
ERASER
(Eraser lamp)
CHVON
SCANER
(Polygon motor)
SPVDR

Timing chart No. 9 Paper cassette feeding, two ledger size papers

Timing chart No. 11 MP tray feeding, two A4R size papers

Timing chart No. 12 MP tray feeding, two A3 size papers

Timing chart No. 13 MP tray feeding, two B5 size papers

Timing chart No. 14 MP tray feeding, two B4 size papers

Timing chart No. 16 MP tray feeding, two letter size papers

Drum speed:92.99 mm/s :Jam detection timing
Paper feeding speed:94.13 mm/s
Printing speed:13.36 ppm
MOTOR
(Main motor)
MHVDR
(Main charger)
THVDR
(Transter charger)
MPFDR
(MP tray feed clutch)
MIDDR
(Middle feed clutch)
REGDR
(Registration clutch)
LASER
(Laser diode)
BIAS
(Developing bias)
ERASER
(Eraser lamp)
CHVON
SCANER
(Polygon motor)
SPVDR

Timing chart No. 18 MP tray feeding, two ledger size papers

Timing chart No. 19 MP tray feeding, two custom size papers

Wiring diagram

Repetitive defects gauge

First occurrence of defect

This page is intentionally left blank.

KYOCERA MITA EUROPE B.V.

Hoeksteen 40, 2132 MS Hoofddorp,
The Netherlands
Phone: (020) 6540000
Home page: http://www.kyoceramita-europe.com
Email: info@kyoceramita-europe.com
KYOCERA MITA NEDERLAND B.V.
Hoeksteen 40, 2132 MS Hoofddorp,
The Netherlands
Phone: (020) 5877200
KYOCERA MITA (UK) LIMITED
8 Beacontree Plaza
Gillette Way
Reading RG2 OBS UK
Phone: (0118) 9311500
KYOCERA MITA ITALIA S.P.A.
Via Verdi 89/91 20063 Cernusco sul Naviglio (Milano) Italy
Phone: 02-92179 1
S.A. KYOCERA MITA BELGIUM N.V. Hermesstraat 8A, 1930 Zaventem, Belgium Phone: (02) 7209270
KYOCERA MITA FRANCE S.A.R.L.
Parc les Algorithmes
SAINT AUBIN
91194 GIF-SUR-YVETTE
France
Phone: (01) 69852600
KYOCERA MITA ESPAÑA S.A.
Edificio Mita, Avda. De Manacor №2, Urb. Parque Rozas, Apartado de Correos 76, 28230 Las Rozas, Madrid, Spain Phone: (91) 631-8392
KYOCERA MITA FINLAND OY
Kirvesmiehenkatu 4, 00810 Helsinki,
Finland
Phone: (09) 478-05200
KYOCERA MITA (SCHWEIZ) AG
Holzliwisen Industriestrasse 28,
8604 Volketswil, Switzerland
Phone: (01) 9084949
KYOCERA MITA DEUTSCHLAND GMBH
Mollsfeld 1240670 Meerbusch,
(Osterath) Germany
Phone: 02159-918120

KYOCERA MITA GMBH AUSTRIA

Eduard-Kittenberger-Gasse 95,
1230, Wien, Austria
Phone: (01) 86338-0
KYOCERA MITA SVENSKA AB
Vretenvagen 2
17154 Solna, Sweden
Phone: (08) 54655000
KYOCERA MITA NORGE
Postboks 150 Oppsal, NO 0619 Oslo Olaf Helsetsvei 6, NO 0694 Oslo
Phone: (22) 627300

KYOCERA MITA DANMARK A/S
Industrivej 11, DK-4632 Bjæverskov, Denmark
Phone: (56) 871100
KYOCERA MITA PORTUGAL LDA.
Rua de Campolide,
№56-50 dto,
1070-026, Lisbon, Portugal
Phone: (21) 09-00

KYOCERA MITA SOUTH AFRICA

(PTY) LTD.
UNIT 3, "Kyalami Crescent,"
Kyalami Business Park,
1685 Midrand, South Africa
Phone: (11) 466-3290
KYOCERA MITA
AMERICA, INC.
Headquarters:
225 Sand Road, P.O. Box 40008,
Fairfield, New Jersey 07004-0008,
U.S.A.

Phone: (973) 808-8444

KYOCERA MITA AUSTRALIA PTY.

LTD.
Level 3, 6-10 Talavera Road, North Ryde,
N.S.W. 2113 Australia

Phone: (02) 9888-9999

KYOCERA MITA NEW ZEALAND LTD.

1-3 Parkhead Place,
Albany, Auckland,
New Zealand
Phone: (09) 415-4517
KYOCERA MITA (THAILAND) CORP.,
LTD.
9/209 Ratchada-Prachachem Road,
Bang Sue, Bangkok 10800, Thailand
Phone: (02) 586-0320
KYOCERA MITA SINGAPORE
PTE LTD.
121 Genting Lane, 3rd Level,
Singapore 349572
Phone: 67418733

KYOCERA MITA HONG KONG

LIMITED

11/F., Mita Centre,
552-566, Castle Peak Road,
Tsuen Wan, New Territories,
Hong Kong
Phone: 24297422

KYOCERA MITA TAIWAN

CORPORATION
7F-1~2, No.41, Lane 221, Gangchi Rd. Neihu District, Taipei, Taiwan, 114. R.O.C.
Phone: (02) 87511560
KYOCERA MITA
CORPORATION
2-28, 1-chome, Tamatsukuri, Chuo-ku
Osaka 540-8585, Japan
Phone: (06) 6764-3555

KYOCERA MITA AMERICA, INC.

Headquarters:
225 Sand Road, P.O. Box 40008
Fairfield, New Jersey 07004-0008
TEL : (973) 808-8444
FAX : (973) 882-6000
New York Show Room:
1410 Broadway 23rd floor
New York, NY 10018
TEL : (917) 286-5400
FAX : (917) 286-5402
Northeastern Region:
225 Sand Road, P.O. Box 40008
Fairfield, New Jersey 07004-0008
TEL : (973) 808-8444
FAX : (973) 882-4401
Midwestern Region:
201 Hansen Court Suite 119
Wood Dale, Illinois 60191
TEL : (630) 238-9982
FAX : (630) 238-9487

Western Region:
14101 Alton Parkway, Irvine, California 92618-7006
TEL : (949) 457-9000
FAX : (949) 457-9119
Southeastern Region:
1500 Oakbrook Drive,
Norcross, Georgia 30093
TEL : (770) 729-9786
FAX : (770) 729-9873
Southwestern Region:
2825 West Story Road, Irving, Texas 75038-5299
TEL : (972) 550-8987
FAX : (972) 570-4704
Dallas Parts Distribution Center \& National Training Center: 2825 West Story Road, Irving, Texas 75038-5299
TEL : (972) 659-0055
FAX : (972) 570-5816

KYOCERA MITA CANADA, LTD.

6120 Kestrel Road, Mississauga,
Ontario L5T 1S8, Canada
TEL : (905) 670-4425
FAX : (905) 670-8116

KYOCERA MITA MEXICO, S.A. DE C.V.

Av. 16 de Septiembre \#407
Col. Santa Inés,
02130 Azcapotzalco
México, D.F. México
TEL : (55) 383-2741
FAX : (55) 383-7804

